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Chapter 7. Covariant Formulation of Electrodynamics 
Notes: 
• Most of the material presented in this chapter is taken from Jackson, Chap. 11, and 

Rybicki and Lightman, Chap. 4. 
• Starting with this chapter, we will be using Gaussian units for the Maxwell equations 

and other related mathematical expressions. 
• In this chapter, Latin indices are used for space coordinates only (e.g., i = 1,2,3 , 

etc.), while Greek indices are for space-time coordinates (e.g., α = 0,1,2,3 , etc.). 

7.1 The Galilean Transformation 
Within the framework of Newtonian mechanics, it seems natural to expect that the 
velocity of an object as seen by observers at rest in different inertial frames will differ 
depending on the relative velocity of their respective frame. For example, if a particle of 
mass m  has a velocity ′u  relative to an observer who is at rest an inertial frame ′K , 
while this frame is moving with at a constant velocity v  as seen by another observer at 
rest in another inertial frame K , then we would expect that the velocity u  of the particle 
as measured in K  to be 
 
 u = ′u + v.  (7.1) 
  
That is, it would seem reasonable to expect that velocities should be added when 
transforming from one inertial frame to another; such a transformation is called a 
Galilean transformation. In fact, it is not an exaggeration to say that this fact is at the 
heart of Newton’s Second Law. Indeed, if we write the mathematical form of the Second 
Law in frame K  we have 
 

 
F = m d 2x

dt 2
= m du

dt

= m
d ′u + v( )

dt
,

 (7.2) 

 
but since v  is constant 
 

 F = m d ′u
dt

= ′F ,  (7.3) 

 
or 
 

 m d 2x
dt 2

= m d 2 ′x
dt 2

.  (7.4) 

 
The result expressed through equation (7.4) is a statement of the covariance of Newton’s 
Second Law under a Galilean transformation. More precisely, the Second Law retains the 
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same mathematical form no matter which inertial frame is used to express it, as long as 
velocities transform according to the simple addition rule stated in equation (7.1). 

It is also important to realize that implicit to this derivation was the fact that everywhere 
it was assumed that, although velocities can change from one inertial frame to another, 
time proceeds independently of which reference frame is used. That is, if t  and ′t  are the 
time in K  and ′K , respectively, and if they are synchronized initially such that t = ′t = 0  
then 
 
 t = ′t ,               at all times.  (7.5) 
 
Although the concepts of Galilean transformation (i.e., equation (7.1)) and absolute time 
(i.e., equation (7.5)), and therefore Newton’s Second Law, are valid for a vast domain of 
applications, they were eventually found to be inadequate for system where velocities 
approach the speed of light or for phenomenon that are electrodynamic in nature (i.e., 
those studied using Maxwell’s equations). To correctly account for a larger proportion of 
physical systems, we must replace the Galilean by the Lorentz transformation, abandon 
the notion of absolute time, and replace the formalism of Newtonian mechanics by that of 
special relativity.  

7.2 The Lorentz Transformation 
The special theory of relativity is based on two fundamental postulates: 
 

I. The laws of nature are the same in two frames of reference in uniform relative 
motion with no rotation. 

II. The speed of light is finite and independent of the motion of its source in any 
frame of reference. 

 
We consider two inertial frames K  and ′K , as shown in Figure 7-1, with relative uniform 
velocity v  along their respective x-axis , the origins of which are assumed to coincide at 
times t = ′t = 0 . If a light source at the origin and at rest in K  emits a short pulse at time 
t = 0 , then an observer at rest in any of the two frames of reference will (according to 
postulate II) see a shell of radiation centered on the origin expanding at the speed of light 
c . That is, a shell of radiation is observed independent of the frame of the inertial 
observer. Because this result obviously contradicts our previous (Galilean) assumption 
that velocities are additive, it forces us to reconsider our notions of space and time, and 
view them as quantities peculiar to each frame of reference and not universal. Therefore, 
we have for the equations of the expanding sphere in the frames 
 

 
c2t 2 − x2 + y2 + z2( ) = 0

c2 ′t 2 − ′x 2 + ′y 2 + ′z 2( ) = 0,  (7.6) 

 
or alternatively,  
 
 c2t 2 − x2 + y2 + z2( ) = c2 ′t 2 − ′x 2 + ′y 2 + ′z 2( ).  (7.7) 
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Figure 7-1 - Two inertial frames with a relative velocity v  along the x-axis . 
After consideration of the homogeneity and isotropic nature of space-time, it can be 
shown that equation (7.7) applies in general, i.e., not only to light propagation. The 
coordinate transformation that satisfies this condition, and the postulates of special 
relativity, is the so-called Lorentz Transformation.  
We can provide a mathematical derivation of the Lorentz transformation for the system 
shown in Figure 7-1 as follows (please note that a much more thorough and satisfying 
derivation will be found, by the more adventurous reader, in the fourth problem list). 
Because of the homogeneity of space-time, we will assume that the different components 
xµ  and ′xν  of the two frames are linked by a set of linear relations. For example, we write 
 

 
′x0 = Ax0 + Bx1 + Cx2 + Dx3
′x1 = Ex0 + Fx1 +Gx2 + Hx3,

 (7.8) 

  
and similar equations for ′x2  and ′x3 , where we introduced the following commonly used  
notation x0 = ct,  x1 = x,  x2 = y,  and x3 = z . However, since the two inertial frames 
exhibit a relative motion only along the x-axis , we will further assume that the directions 
perpendicular to the direction of motion are the same for both systems with 
 

 
′x2 = x2
′x3 = x3.

 (7.9) 

 
Furthermore, because we consider that these perpendicular directions should be 
unchanged by the relative motion, and that at low velocity (i.e., when  v≪ c ) we must 
have  
 
 ′x1 = x1 − vt,  (7.10) 
 
we will also assume that the transformations do not “mix” the parallel and perpendicular 
components. That is, we set C = D = G = H = 0  and simplify equations (7.8) to 
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′x0 = Ax0 + Bx1
′x1 = Ex0 + Fx1.

 (7.11) 

 
Therefore, we only need to solve for the relationship between ′x0 , ′x1( )  and x0 , x1( ) . To do 
so, we first consider a particle that is at rest at the origin of the referential K  such that 
x1 = 0  and its velocity as seen by an observer at rest in ′K  is −v . Using equations (7.11) 
we find that 
 

 ′x1
′x0
= −

v
c
=
E
A
.  (7.12) 

 
Second, we consider a particle at rest at the origin of ′K  such that now ′x1 = 0  and its 
velocity as seen in K  is v . This time we find from equations (7.11) that 
 

 x1
x0

=
v
c
= −

E
F
,  (7.13) 

 
and the combination of equations (7.12) and (7.13) shows that A = F ; we rewrite 
equations (7.11) as 
 

 
′x0 = A x0 +

B
A
x1

⎛
⎝⎜

⎞
⎠⎟

′x1 = A x1 −
v
c
x0

⎛
⎝⎜

⎞
⎠⎟
.
 (7.14) 

 
Third, we note that from Postulate II the propagation of a light pulse must happen at the 
speed of light in both inertial frames. We then set ′x0 = ′x1  and x0 = x1  in equations (7.14) 
to find that  
 

 
B
A
= −

v
c
,  (7.15) 

 
and 
 

 
′x0 = A x0 −

v
c
x1

⎛
⎝⎜

⎞
⎠⎟

′x1 = A x1 −
v
c
x0

⎛
⎝⎜

⎞
⎠⎟
.
 (7.16) 

 
Evidently, we could have instead proceeded by first expressing the xµ  as a function of 
the ′xν  with  
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x0 = ′A ′x0 + ′B ′x1
x1 = ′E ′x0 + ′F ′x1,

 (7.17) 

 
from which, going through the same process as above, we would have found that 
 

 
x0 = ′A ′x0 +

v
c

′x1
⎛
⎝⎜

⎞
⎠⎟

x1 = ′A ′x1 +
v
c

′x0
⎛
⎝⎜

⎞
⎠⎟
.
 (7.18) 

 
Not surprisingly, equations (7.18) are similar in form to equations (7.16) with v  replaced 
by −v . The first postulate of special relativity tells us, however, that the laws of physics 
must be independent of the inertial frame. This implies that 
 
 A = ′A  (7.19) 
 
(this result can also be verified by inserting equations (7.16) and (7.18) into equation 
(7.7), as this will yield A2 = ′A 2 ). If we insert equations (7.18) into equations (7.16) we 
find that  
 

 A = 1− v
c

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1 2

.  (7.20) 

 
we can finally write the Lorentz transformation, in its usual form for the problem at hand, 
as 
  

 

′x0 = γ x0 − βx1( )
′x1 = γ x1 − βx0( )
′x2 = x2
′x3 = x3,

 (7.21) 

 
with  
 

 

β =
v
c

β = β

γ = 1− β 2( )−1 2 .
 (7.22) 

  
The inverse transformation is easily found by swapping the two sets of coordinates, and 
by changing the sign of the velocity. We then get 
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x0 = γ ′x0 + β ′x1( )
x1 = γ ′x1 + β ′x0( )
x2 = ′x2
x3 = ′x3.

 (7.23) 

 
Alternatively, it should be noted that equations (7.21) could be expressed with a single 
matrix equation relating the coordinates of the two inertial frames 
 
  ′

!x = Lx β( ) !x,  (7.24) 
 
where the arrow is used for space-time vectors and distinguishes them from ordinary 
space vectors. More explicitly, this matrix equation is written as 
 

 

′x0
′x1
′x2
′x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x0
x1
x2
x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.  (7.25) 

 
It is easy to verify that the inverse of the matrix present in equation (7.25) is that which 
can similarly be obtained from equations (7.23). Although these transformations apply to 
frames that have their respective system of axes aligned with each other, Lorentz 
transformations between two arbitrarily oriented systems with a general relative velocity 
v  can be deduced by starting with equations (7.21) (or (7.23)) and apply the needed 
spatial rotations. 
For example, to find the Lorentz transformation L β( )  applicable when the axes for 
K  and ′K  remain aligned to each other, but the relative velocity v  is allowed to take on 
an arbitrary orientation, we could first make a rotation R  that will bring the x1-axis  
parallel to the orientation of the velocity vector, then follow this with the basic Lorentz 
transformation Lx β( )  defined by equations (7.25), and finish by applying the inverse 
rotation R−1 . That is, 
 
 L β( ) = R−1Lx β( )R.  (7.26) 
 
When these operations are performed, one then finds (see the fourth problem list)  
 

 
′x0 = γ x0 − β ⋅x( )

′x = x +
γ −1( )
β 2 β ⋅x( )β − γ βx0 .

 (7.27) 
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Since the Lorentz transformation “mixes” space and time coordinates between the two 
frames, we cannot arbitrarily dissociate the two types of coordinates. The basic unit in 
space-time is now an event, which is specified by a location in space and time given in 
relation to any system of reference. This mixture of space and time makes it evident that 
we must abandon our cherished and intuitive notion of absolute time. 

7.2.1 Four-vectors  
Since we saw in the last section that the Lorentz transformation can simply be expressed 
as a matrix relating the coordinates of two frames of reference (see equation (7.25)), it 
was natural to define vectors  

!x and ′!x  to represent these coordinates. Because these 
vectors have for components, they are called four-vectors. Just like the coordinate four-
vector contains a four coordinates x0 , x1, x2 , x3( ) , an arbitrary four-vector  

!
A  has four 

components A0 ,A1,A2 ,A3( ) . Moreover, the “invariance” of the four-vector  
!x  expressed 

through equation (7.7) is also applicable to any other four-vectors. That is, a four-vector 
must obey the following relation 
 
 A0

2 − (A1
2 + A2

2 + A3
2 ) = ′A0

2 − ( ′A1
2 + ′A2

2 + ′A3
2 ). (7.28) 

7.2.2 Proper Time and Time Dilation 

We define the infinitesimal invariant ds  associated with the infinitesimal coordinate 
four-vector  d

!x  as (see equation (7.7)) 
 

 
ds2 = dx0

2 − dx1
2 + dx2

2 + dx3
2( )

= cdt( )2 − dx2 + dy2 + dz2( ).
 (7.29) 

 
If a inertial frame ′K  is moving relative to another one (K ) with a velocity v  such that 
dx = vdt (with dx  the spatial part of  d

!x ), then equation (7.29) can be written as 
 

 
ds2 = c2dt 2 − dx 2

= c2dt 2 1− β 2( ).  (7.30) 

 
For an observer at rest in ′K , however, it must be (by definition) that d ′x = 0 , and from 
equation (7.30)  
 
 ds2 = c2d ′t 2 = c2dt 2 1− β 2( ).  (7.31) 
 
We define the proper time τ  with 
 
 ds = cdτ  (7.32) 
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Comparison of equations (7.31) with (7.32) shows that an element of proper time is the 
actual time interval measured with a clock at rest in a system. The elements of time 
elapsed in each reference frame (and measured by observers at rest in each of them) are 
related through 
 

 dτ = dt 1− β 2 =
dt
γ
.  (7.33) 

 
Since γ > 1, then to an observer at rest in K  time appears to be passing by more slowly 
in ′K . More precisely, a proper time interval τ 2 − τ1  will be seen in K  as lasting 
 

 t2 − t1 =
dτ

1− β 2 τ( )τ1

τ2∫ = γ τ( ) dτ
τ1

τ2∫ ,  (7.34) 

 
where we assumed that the velocity could be changing with (proper) time. This 
phenomenon is called time dilation. 

7.2.3 Length Contraction 
Let us suppose that a rod of length L0  is kept at rest in ′K , and laid down in the ′x  
direction. We now inquire as to what will be the length for this rod when measured by an 
observer in K . One important thing to realize is that the length of the rod as measured in 
K  will be L = x1 b( ) − x1 a( ) , where x1 a( )  and x1 b( )  are the position of the ends of the 
rod at the same time t  when the measurement occurs. More precisely, t  is the time 
coordinate associated with K  and no other frame. So, from equations (7.21) we have 
 

 

L0 ≡ ′x1 b( ) − ′x1 a( )
= γ x1 b( ) − βx0⎡⎣ ⎤⎦ − γ x1 a( ) − βx0⎡⎣ ⎤⎦
= γ x1 b( ) − x1 a( )⎡⎣ ⎤⎦,

 (7.35) 

 
or alternatively 
 

 L =
L0
γ
.  (7.36) 

 
Therefore, to an observer in K  the rod appears to be smaller than the length it has when 
measured at rest (i.e., in ′K ). This apparently peculiar result is just a consequence of the 
fact that, in special relativity, events that are simultaneous (i.e., happen at the same time) 
in one reference frame will not be in another (if the two frames are moving relative to one 
another). The concept of simultaneity must be abandoned in special relativity. 
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7.2.4 Relativistic Doppler Shift 
We saw in section 7.2 that the space-time “length” element ds  is invariant as one goes 
from one inertial frame to the next. Similarly, since the number of crests in a wave train 
can be, in principle, counted, it must be a relativistic invariant. Then, the same must be 
true of the phase of a plane wave φ . Mathematically, if ω  and k  are, respectively, the 
angular frequency and the wave vector of a plane wave as measured in K , then the 
invariance of the phase means that 
 
 φ =ωt − k ⋅x = ′ω ′t − ′k ⋅ ′x . (7.37) 
 
Since ω = ck  and with k = kn , we can write 
 
 k ct − n ⋅x( ) = ′k c ′t − ′n ⋅ ′x( ),  (7.38) 
 
 
and upon using equations (7.27), while breaking all vectors in parts parallel and 
perpendicular to the velocity (i.e.,  x = x! + x⊥ ), we have 
 

 

 

k ct − n! ⋅x! − n⊥ ⋅x⊥( ) = ′k γ ct − β ⋅x!( ) − γ ′n! ⋅ x! −β ct( ) − ′n⊥ ⋅x⊥⎡⎣ ⎤⎦

= ′k γ ct 1+ ′n! ⋅β( ) − γ x! ⋅ ′n! + β( ) − ′n⊥ ⋅x⊥⎡⎣ ⎤⎦.
 (7.39) 

 
If this equation is to hold at all times t  and position x , then the different coefficients for 

 t,  x!,  and x⊥  on either side must be equal. That is, 
 

 

 

ω = γ ′ω 1+ ′n! ⋅β( )
k! = γ ′k! + β ′ω

c
⎛
⎝⎜

⎞
⎠⎟

k⊥ = ′k⊥ .

 (7.40) 

 
The first of equations (7.40) is that for the Doppler shift. It is important to note that the 
term in parentheses is the same as the one that appears in the non-relativistic version of 
the formula, but that there will also be a Doppler shift in the relativistic case (although of 
second order) even if the direction of propagation of the wave is perpendicular to velocity 
vector. This is because of the presence of the γ  factor on the right-hand side of this 
equation. Equally important is the fact that, as evident from our analysis, the frequency 
and the wave vector form a four-vector  

!
k  (with k0 =ω c ), and that the phase φ  is an 

invariant resulting from the following scalar product 
 
  

!
k ⋅ !x = φ,  (7.41) 

 
from equation (7.37). The second of equations (7.40) can be transformed to give 
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cos θ( ) = ′k
k
γ cos ′θ( ) + β⎡⎣ ⎤⎦

= ′ω
ω

γ cos ′θ( ) + β⎡⎣ ⎤⎦

=
cos ′θ( ) + β
1+ β cos ′θ( ) ,

 (7.42) 

 
where the first of equations (7.40) was used, and θ  and ′θ  are the angles of k and ′k  
relative to β . In turn, the last two of equations (7.40) can be combined as follows 
 

 

 

k⊥

k!
= ′k⊥
γ ′k! + β ′k0( )

tan θ( ) = sin ′θ( )
γ cos ′θ( ) + β⎡⎣ ⎤⎦

.
 (7.43) 

 
Finally, inverting equation (7.42) to get cos ′θ( )  as a function of cos θ( )  and sin θ( ) , 
substituting it into the first of equations (7.40) will easily lead to the following set of 
equations 
 

 

 

′ω = γω 1− n! ⋅β( )
′k! = γ k! − βk0( )
′k⊥ = k⊥ .

 (7.44) 

 
This result is equivalent to that of, and could have been obtained in the same manner as 
was done for, equations (7.40). It should also be noted that for a plane wave 
 
  

!
k ⋅
!
k = 0.  (7.45) 

 

7.2.5 The Transformation of Velocities 
We now endeavor to find out what will the velocity u  of a particle as measured in K  be 
if it has a velocity ′u  in ′K . From equations (7.27), we can write 
 

 

 

u! =
dx!
dt

=
γ d ′x! + vd ′t( )

γ d ′t + v ⋅d ′x
c2

⎛
⎝⎜

⎞
⎠⎟
=

′u! + v

1+ v ⋅ ′u
c2

u⊥ =
dx⊥
dt

=
d ′x⊥

γ d ′t + v ⋅d ′x
c2

⎛
⎝⎜

⎞
⎠⎟
= ′u⊥

γ 1+ v ⋅ ′u
c2

⎛
⎝⎜

⎞
⎠⎟
,
 (7.46) 
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and it is easily seen that when both u  and v  are much smaller than c , equations (7.46) 
reduces to the usual Galilean addition of velocities ′u + v . The orientation of u , 
specified by its spherical coordinate angles θ  and ϕ , can be determined as follows 
 

 

 

tan θ( ) = u⊥

u!
=

′u sin ′θ( )
γ ′u cos ′θ( ) + v⎡⎣ ⎤⎦

ϕ = ′ϕ ,
 (7.47) 

 
since u2 u3 = ′u2 ′u3 . 

7.2.6 The Four-velocity and the Four-momentum 
We already know that  d

!x  is a four-vector. Since we should expect that the division of a 
four-vector by an invariant would not change its character (i.e., the result will still be a 
four-vector), then an obvious candidate for a four-vector is the four-velocity 
 

 
 

!
U ≡

d!x
dτ

 (7.48) 

 
The components of the four-velocity are easily evaluated with 
 

 
U0 =

dx0
dt

dt
dτ

= γ uc

U =
dx
dt

dt
dτ

= γ uu
 (7.49) 

 

with γ u = 1− u2 c2( )− 12 . Thus the time component of the four-velocity is γ u  times c , 
while the spatial part is γ u  times the ordinary velocity. The transformation of the four-
velocity under a Lorentz transformation is (using as always the inertial frames K  and ′K  
defined earlier; that is to say, we are now considering the case of a particle traveling at a 
velocity u  in K , which in turn has a velocity −v  relative to ′K ) 
 

 

 

′U0 = γ v U0 − β ⋅U( )
′U! = γ v U! − βU0( )
′U⊥ = U⊥ ,

 (7.50) 

 

with γ v = 1− β 2( )− 12 . Using equations (7.49) for the definition of the four-velocity, and 
inserting it into equations (7.50), we get 
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γ ′u c = γ vγ u c − β ⋅u( )
γ ′u ′u! = γ vγ u u! − βc( )
γ ′u ′u⊥ = γ uu⊥ .

 (7.51) 

 
The first of this set of equations can be rewritten to express the transformation of 
velocities in terms of the γ 's  
 

 γ ′u = γ vγ u 1−
u ⋅v
c2

⎛
⎝⎜

⎞
⎠⎟
,  (7.52) 

 
while dividing the second and third by the first of equations (7.51) yields 
 

 

 

′u! =
u! − v

1− u ⋅v
c2

′u⊥ =
u⊥

γ v 1−
u ⋅v
c2

⎛
⎝⎜

⎞
⎠⎟
.
 (7.53) 

 
It will be recognized that this last result expresses, just like equations (7.46), the law for 
the addition of relativistic velocities. Another important quantity associated with  

!
U  is the 

following relativistic invariant 
 
  

!
U ⋅
!
U = γ u

2 c2 − u ⋅u( ) = c2 .  (7.54) 
 
The four-momentum  

!
P  of a particle is another fundamental relativistic quantity. It is 

simply related to the four-velocity by 
 
  

!
P = m

!
U  (7.55) 

 
where m  is the mass of the particle. Referring to equations (7.49), we find that the 
components of the four-momentum are 
 

 
P0 = γmc
p = γmu

 (7.56) 

 

with γ = 1− u2 c2( )− 12 , and u  the ordinary velocity of the particle. If we consider the 
expansion of P0c  for a non-relativistic velocity  u ≪ c , then we find 
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P0c = γmc2 = mc2 + 1

2
mu2 +!  (7.57) 

 
Since the second term on the right-hand side of equation (7.57) is the non-relativistic 
expression of the kinetic energy of the particle, we interpret E = P0c  as the total energy 
of the particle. The first term (i.e., mc2 ) is independent of the velocity, and is interpreted 
as the rest energy of the particle. 

Finally, since  
!
P  is a four-vector, we inquire about the Lorentz invariant that can be 

calculated with 
 
  

!
P ⋅
!
P = m2 !U ⋅

!
U = m2c2 ,  (7.58) 

 
from equation (7.54). But since we also have 
 

 
 

!
P ⋅
!
P =

E2

c2
− p ⋅p,  (7.59) 

 
we find Einstein’s famous equation linking the energy of a particle to its mass 
 

 

E2 = m2c4 + c2 p2

= m2c4 1+ p2

m2c2
⎛
⎝⎜

⎞
⎠⎟

= m2c4 1+ γ 2 u2

c2
⎛
⎝⎜

⎞
⎠⎟

= γmc2( )2 ,

 (7.60) 

 
or alternatively 
 

 E = γmc2 = mc2

1− u
2

c2

 (7.61) 

7.3 Tensor Analysis 
So far, we have discussed physical quantities in the context of special relativity using 
four-vectors. But just like in ordinary three-space where vectors can be handled using a 
component notation, we would like to do the same in space-time. For example, the 
position vector x  has three components xi , with i = 1, 2, 3  for x, y,  and z , respectively, 
in ordinary space, and similarly the “position” four-vector  

!x  has four components xα , 
with α = 0, 1, 2, 3  for ct, x, y,  and z . Please note the position of the indices (i.e., they 
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are superscript); we call this representation for the four-position or any other four-vector 
the contravariant representation.  

In ordinary space, the scalar product between, say, x and y  can also be written 
 

 x ⋅ y = x1, x2 , x3( )
y1

y2

y3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,  (7.62) 

 
where the vector x  was represented as a row vector, as opposed to a column vector, and 
for this reason we used subscript. That is, we differentiate between the row and column 
representations of the same quantity by changing the position of the index identifying its 
components. We call subscript representation the covariant representation. Using these 
definitions, and Einstein’s implied summation on repeated indices, we can write the 
scalar product of equation (7.62) as  
 
 x ⋅ y = xiy

i .  (7.63) 
 
It should be noted that if the scalar product is to be invariant in three-space (e.g., 
x2 = x ⋅x  does not change after the axes of the coordinate system, or x  itself, are 
rotated), then covariant and contravariant components must transform differently under a 
coordinate transformation. For example, if we apply a rotation R  to the system of axes, 
then for x ⋅ y  to be invariant under R  we must have that 
 
 x ⋅ y = xR−1⎡⎣ ⎤⎦ ⋅ Ry[ ] = ′x ⋅ ′y ,  (7.64) 
 
where ′x  and ′y  are the transformed vectors. It is clear from equation (7.64) that column 
(i.e., contravariant) vectors transform with R , while row (i.e., covariant) vectors 
transform with its inverse. Similarly, in space-time we define the covariant 
representation of the four-vector  

!x  (often written as  !x ) has having the components xα , 
with α = 0, 1, 2, 3 . Therefore, the scalar product of two four-vectors is 
 
  

!x ⋅ !y = xα y
α .  (7.65) 

 
Four-vectors have only one index, and are accordingly called contravariant or covariant 
tensors of rank one. If we have two different sets of coordinates xα  and ′x α  related to 
each other through a Lorentz transformation (i.e., a coordinate transformation) 
 
 ′x α = ′x α x0 , x1, x2 , x3( ),  (7.66) 
 
then any contravariant vector Aα  will transform according to 
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 ′A α =
∂ ′x α

∂xβ
Aβ  (7.67) 

 
Conversely, a covariant vector Aα  will transform according to 
 

 ′Aα =
∂xβ

∂ ′x α Aβ  (7.68) 

 
Of course, tensors are not limited to one index and it is possible to define tensors of 
different ranks. The simplest case is that of a tensor of rank zero, which corresponds to an 
invariant. An invariant has the same value independent of the inertial system (or 
coordinate system) it is evaluated in. For example, the infinitesimal space-time length ds  
is defined with 
 
 ds2 = dxαdx

α .  (7.69) 
 
The invariance of the scalar product can now be verified with  
 

 

 

!
A ⋅
!
B = ′Aα ′B α =

∂xβ

∂ ′x α Aβ
∂ ′x α

∂xγ
Bγ

=
∂xβ

∂ ′x α

∂ ′x α

∂xγ
AβB

γ =
∂xβ

∂xγ
AβB

γ

= δ β
γ AβB

γ = Aγ B
γ .

 (7.70) 

 
Contravariant, covariant, and mixed tensors of rank two are, respectively, defined by 
 

 

′F αβ =
∂ ′x α

∂xγ
∂ ′x β

∂xδ
Fγδ

′Gαβ =
∂xγ

∂ ′x α

∂xδ

∂ ′x β Gγδ

′H α
β =

∂ ′x α

∂xγ
∂xδ

∂ ′x β H
γ
δ

 (7.71) 

 
These definitions can easily be extended to tensors of higher rank. It should be kept in 
mind that different flavors of a given tensor are just different representation of the same 
mathematical object. It should, therefore, be possible to move from one representation to 
another. This is achieved using the symmetric metric tensor gαβ  ( gαβ = gβα ). That is, the 
metric tensor allows for indices to be lowered as follows 
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Fα

β = gαγF
γβ

Fα
β = gβγF

αγ .
 (7.72) 

 
If we define a contravariant version of the metric tensor such that 
 
 gαγ g

γβ = gα
β = δα

β  (7.73) 

 
then indices of tensors can also be raised 
 

 
Fα

β = gβγFαγ
Fα

β = g
αγFγβ .

 (7.74) 

 
The metric tensor can also be made to appear prominently in the definition of the scalar 
product. For example, 
 
 ds2 = gαβdx

αdxβ .  (7.75) 
 
From this, and the definition of the space-time length element (i.e., equation (7.29)), it is 
deduced that the metric tensor is diagonal with 
 
 g00 = 1,     and     g11 = g22 = g33 = −1. (7.76) 
 
Furthermore, it is easy to see that g00 = g00 ,  g11 = g11 , etc. Please take note that equation 
(7.76) is only true for flat space-time in Cartesian coordinates. It would not apply, for 
example, if space-time were curved (in the context of general relativity), or if one used 
curvilinear coordinates (e.g., spherical coordinates). In flat space-time the metric tensor is 
often written as ηαβ , and called the Minkowski metric. From equation (7.76), we can 
also better see the important difference between the contravariant and covariant flavors of 
the same four-vector, since 
 

 Aα =
A0

A
⎛
⎝⎜

⎞
⎠⎟

,      and     Aα = A0 ,−A( ).  (7.77) 

 
Finally, we inquire about the nature of the gradient operator in tensor analysis. Since we 
know from elementary calculus that 
 

 
∂

∂ ′x α =
∂xβ

∂ ′x α

∂
∂xβ

,  (7.78) 

 
then the components of the gradient operator transform as that of a covariant vector. 
Since, from equations (7.74), we can write  
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 xα = gαβx

β ,  (7.79) 
 
then 
 

 
∂
∂xγ

=
∂xα
∂xγ

∂
∂xα

=
∂ gαβx

β( )
∂xγ

∂
∂xα

,  (7.80) 

 
and, since in flat space-time the metric tensor is constant, 
 

 

∂
∂xγ

= xβ
∂gαβ
∂xγ

+ gαβ
∂xβ

∂xγ
⎡

⎣
⎢

⎤

⎦
⎥

∂
∂xα

= gαβδγ
β ∂
∂xα

= gαγ
∂
∂xα

.

 (7.81) 

 
Alternatively, operating on both sides of equation (7.81) with ′g βγ  (while using the 
“prime” coordinates) yields a gradient operator that transforms as a contravariant tensor 
since (using the first of equations (7.71) and equation (7.78)) 
 

 

∂
∂ ′xα

= ′g αγ ∂
∂ ′x γ = gµν ∂ ′x α

∂xµ

∂ ′x γ

∂xν
⎛
⎝⎜

⎞
⎠⎟

∂xβ

∂ ′x γ

∂
∂xβ

⎛
⎝⎜

⎞
⎠⎟

= gµν ∂ ′x α

∂xµ

∂ ′x γ

∂xν
∂xβ

∂ ′x γ

⎛
⎝⎜

⎞
⎠⎟

∂
∂xβ

= gµν ∂ ′x α

∂xµ δν
β ∂
∂xβ

= gµβ ∂ ′x α

∂xµ

∂
∂xβ

=
∂ ′x α

∂xµ

∂
∂xµ

.

 (7.82) 

 
In what will follow we will use the notation defined below for partial derivatives 
 

 
∂α ≡

∂
∂xα

=
∂ ∂x0

−∇
⎛
⎝⎜

⎞
⎠⎟

∂α ≡
∂
∂xα

=
∂
∂x0

,∇⎛
⎝⎜

⎞
⎠⎟

 (7.83) 

 
The four-dimensional Laplacian operator  !  is the invariant defined by the scalar vector 
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!≡ ∂α∂

α =
1
c2

∂2

∂t 2
− ∇2  (7.84) 

 
We recognize the wave equation operator. It is important to realize that equations (7.80) 
and (7.82) are tensors only in flat space-time (i.e., no curvature, and using Cartesian 
coordinates). The corresponding equations for the general case will differ. 

7.4 Covariance of Electrodynamics 
Before we discuss the invariance of the equations of electrodynamics under Lorentz 
transformations, let us rewrite these equations using Gaussian units. For the Maxwell 
equations we have 
 

 

∇ ⋅D = 4πρ

∇ ×H −
1
c
∂D
∂t

=
4π
c
J

∇ ⋅B = 0

∇ × E +
1
c
∂B
∂t

= 0

 (7.85) 

 
We should note that with these units ε0 = µ0 = 1 , and in free space ε = µ = 1  such that 
D = εE = E  and B = µH = H . Also important are the equation for the Lorentz force  
 

 
dp
dt

= q E +
v
c
× B⎛

⎝⎜
⎞
⎠⎟

 (7.86) 

 
and the continuity equation 
 

 ∂ρ
∂t

+∇ ⋅ J = 0  (7.87) 

 
which is left unchanged from its form in SI units. 

Besides the electromagnetic fields, two other quantities appear in Maxwell’s equations: 
the speed of light c  and the charge q . We already know that the speed of light is an 
invariant (from the second postulate of special relativity). Experiments show that the 
charge is also an invariant (for example, a speed dependency of the charge would imply 
changes in the net charge in a piece of material with chemical reaction; there is no 
experimental evidence for this), and this has implications for what follows. Consider, for 
example, the four-volume element d 4x  defined as  
 
 d 4x = dx0dx1dx2dx3,  (7.88) 
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which transforms as follows under a Lorentz transformation 
 
 d 4 ′x = d ′x 0d ′x 1d ′x 2d ′x 3 = Lx β( ) dx0dx1dx2dx3,  (7.89) 
 
where Lx β( )  is the (Jacobian) determinant of the Lorentz transformation matrix (see 

equation (7.25)). It is straightforward to show that Lx β( ) = 1, and therefore that the four-

volume element is an invariant since d 4x = d 4 ′x . If the charge element dq  is to be an 
invariant with 
 
 dq = ρdx1dx2dx3,  (7.90) 
 
then the charge density must transform in the same manner as the time component of a 
four-vector. Thus, if we assume that J 0 = ρc  is the time component of a four-vector  

!
J  

(the four-current), and we operate on it with the gradient operator of equation (7.83), 
then in consideration of equation (7.87) it must be that the space part is the current 
density J , and 
 

 J µ =
ρc
J

⎛
⎝⎜

⎞
⎠⎟

 (7.91) 

 
The continuity equation is now written as 
 
 ∂α J

α = 0.  (7.92) 
 
We next look at the vector and scalar potentials in the Lorentz gauge where (using 
Gaussian units) we have 
 

 

1
c2

∂2A
∂t 2

− ∇2A =
4π
c
J

1
c2

∂2Φ
∂t 2

− ∇2Φ = 4πρ,
 (7.93) 

 
and 
 

 
1
c
∂Φ
∂t

+∇ ⋅A = 0. (7.94) 

 
If we define the four-potential Aµ  
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 Aµ =
Φ
A

⎛
⎝⎜

⎞
⎠⎟

 (7.95) 

 
then equations (7.93) and (7.94) can be written in a covariant form as 
 

 
 
!Aµ =

4π
c
J µ ,  (7.96) 

 
and 
 
 ∂µA

µ = 0.  (7.97) 
 
Since the electromagnetic fields can be obtained from the potentials with (again using 
Gaussian units) 
  

 E = −
1
c
∂A
∂t

− ∇Φ

B = ∇ × A,
 (7.98) 

 
it can be shown that the components of E and B  can be put together in the antisymmetric 
second rank electromagnetic tensor Fαβ  
 
 Fαβ ≡ ∂αAβ − ∂βAα  (7.99) 
 
The components of the electromagnetic tensors are explicitly 
 

 Fαβ =

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,  (7.100) 

 
or, alternatively, in its fully covariant form 
 

 Fαβ =

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.  (7.101) 

 
Note that Ei , for i = x, y, z , are the Cartesian components of E , etc. That Fαβ  has the 
desired form can be verified by attempting to express the Maxwell equations with it. A 
little calculation will easily show that the first two of equations (7.85) can be written as 
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 ∂αF
αβ =

4π
c
J β  (7.102) 

 
while the last two of equations (7.85) become 
 
 ∂αFβγ + ∂βFγα + ∂γFαβ = 0  (7.103) 

 
Finally, to complete this section, we would like to express the Lorentz force in a 
covariant form. To do so, we must first introduce two more four-vectors. First, just as we 
defined in section 7.2.6 the four-velocity as the proper time derivative of  d

!x , we extend 
this process to define the four-acceleration aµ  as 
 

 aµ ≡
dU µ

dτ
 (7.104) 

 
It is easy to see that the space part of the four-acceleration equals the ordinary 
acceleration in the non-relativistic limit. Note also that the four-acceleration is orthogonal 
to the four-velocity 
 

 
aµUµ =

dU µ

dτ
U µ =

1
2
d
dτ

U µUµ( )

=
1
2
d c2( )
dτ

= 0.
 (7.105) 

 
From equation (7.104), it is a small step to define the four-force Fµ  as 
 

 Fµ ≡
dPµ

dτ
= m dU µ

dτ
= maµ  (7.106) 

 
The Lorentz four-force should involve the electromagnetic fields through Fαβ  and the 
velocity of the charge through U γ . The simplest of such relations is 
 

 
dPα

dτ
= m dUα

dτ
=
q
c
FαβUβ  (7.107) 

 
It can be verified that this relation indeed satisfies equation (7.86). Furthermore, it is seen 
that the time component of equation (7.107) yields 
 

 
dW
dt

= qE ⋅u,  (7.108) 
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which is just a statement of the conservation of energy. In other words, the rate of change 
of particle energy W  is the mechanical work done on the particle by the electric field. 

7.5 Transformation of the Electromagnetic Fields 
As we as previously seen, the E and B  fields themselves are not tensor quantities, but 
components of the electromagnetic tensor Fαβ  (see equation (7.100)). Therefore, if we 
want to inquire about how the electromagnetic fields transform under a Lorentz 
transformation, we need to study the transformation of Fαβ . Going back to the first of 
equations (7.71), we write 
 

 ′F αβ =
∂ ′x α

∂xγ
∂ ′x β

∂xδ
Fγδ . (7.109) 

 
We should note that if we define a matrix Λα

γ  such that 
 

 Λα
γ =

∂ ′x α

∂xγ
,  (7.110) 

 
then equation (7.109) is simply written in a matrix form as 
 
 ′F = ΛFΛT,  (7.111) 
 
with ΛT  the transpose of Λ . In cases where the axes of the two coordinate systems are 
aligned but their relative velocity is arbitrarily oriented, one can start with equations 
(7.27) for the contravariant coordinates 
 

 
′x 0 = γ x0 + βi x

i( )
′x i = xi −

γ −1( )
β 2 β iβ j x

j − γβ i x0
 (7.112) 

 
(please note the differences between equations (7.27) and (7.112)) in order to evaluate the 
partial derivatives 
 

 

∂ ′x 0

∂xγ
= γδ 0γ + γβiδ

i
γ

∂ ′x i

∂x0
= −γβ i

∂ ′x i

∂x j
= δ i

j −
γ −1( )
β 2 β jβ

i .

 (7.113) 

 



167 

Inserting equations (7.113) (twice) in equation (7.109) will yield the components of ′E  
and ′B  through 
 

 
′F j0 = ′E j

′F ij = −ε ijk ′Bk ,
 (7.114) 

 
where Bk ≡ −Bk , and the Levi-Civita symbol is defined such that 
 

 εijk = −ε ijk =
+1, for any even permutation of i = 1, j = 2,  and k = 3
−1, for any odd permutation of i = 1, j = 2,  and k = 3

0, if any two indices are equal

⎧
⎨
⎪

⎩⎪
 (7.115) 

 
After all the required manipulations are performed, one finds that 
 

 
′E = γ E + β × B( ) − γ 2

γ +1
β β ⋅E( )

′B = γ B − β × E( ) − γ 2

γ +1
β β ⋅B( ).

 (7.116) 

 
[To successfully derive equations (7.116) you will need to use the following 
 

 

Bk =
1
2
εijkF

ij

βiF
ij = − β × B[ ] j

βiβ jF
ij = β ⋅ β × B( ) = 0

εijkβ
iF j0 = β × E[ ]k

βmεijkβ
iF jm = β × β × B( )⎡⎣ ⎤⎦

k .

 (7.117) 

 
Note that these equations (as well as equations (7.114)) involve space vectors, not tensors 
(i.e., four-vectors), and are therefore not valid tensor equations.] 
For the simple case where the relative velocity of the aligned inertial systems is directed 
along the x-axis  (as was the case for the K  and ′K  systems defined earlier in the 
chapter), the matrix Λ  is given by equation (7.25), and a straightforward multiplication 
of matrices (or the corresponding simplification of equations (7.116)) yields 
 

 
′E1 = E1 ′B1 = B1
′E2 = γ E2 − βB3( ) ′B2 = γ B2 + βE3( )
′E3 = γ E3 + βB2( ) ′B3 = γ B3 − βE2( )

 (7.118) 
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It should now be obvious from equations (7.116) and (7.118) that the electromagnetic 
fields are not independent entities but are completely interrelated through the 
transformation of the electromagnetic tensor. Finally, we note that we can calculate the 
following invariants from the electromagnetic tensor 
 
 FαβF

αβ = 2 B2 − E2( ),  (7.119) 
 
and  
 
 det Fαβ( ) = det ′F αβ( ) = E ⋅B( )2 .  (7.120) 
 
 


